
Problem Set 4 – Kinetics and Transport

1. Quantum tunneling in electron transfer. In classical Marcus theory, electron transfer occurs at an activation barrier ε_b , where the reduced and oxidized state (with electron) have the same energy. In classical mechanics, a particle can only cross a barrier if it has higher energy than the barrier energy, but in quantum mechanics there is always a probability (even at zero temperature) that an electron can "tunnel" through the barrier at a lower energy $\varepsilon < \varepsilon_b$. For a flat barrier of spatial width d between free domains, the tunneling probability is

$$p_t = \exp\left(-2d\frac{\sqrt{2m_e(\varepsilon_b - \varepsilon)}}{\hbar}\right) \tag{1}$$

where $\hbar = h/2\pi$, h = Planck's constant, and $m_e = \text{electron mass}^1$.

- (a) For a given tunneling distance d what is the effective lowering of the barrier $\Delta \varepsilon = \varepsilon_b \varepsilon$ where $p_t = 0.5$.
- (b) Estimate $\Delta \varepsilon$ and compare with the reorganization energy λ for the case of electron transfer into LiFePO₄ from a metallic carbon coating². Is tunneling important an outer sphere reaction like this?
- (c) Explain why tunneling is more important for inner sphere reactions.

© The Electrochemical Society. Pisani, L., and G. Murgia. "An Analytical Model for Solid Oxide Fuel Cells." *Journal of the Electrochemical Society* 154, no. 8 (2007): B793-B801. All rights reserved. This content is excluded from our Creative Commons license. For more information, see http://ocw.mit.edu/help/faq-fair-use/.

Figure 1: The data above are for H_2/CO fuel mixtures in the same cell with L = 1mm and $c = 7 \times 10^{18}$ cm⁻³. For each question below, explain your reasoning and make a rough estimate (without a calculator). [Pisani & Murgia, J. Electrochem. Soc. (2007)].

2. **SOFC Performance.** A solid oxide fuel cell is fed carbon monoxide gas as the fuel at the anode, where electrochemical oxidation to carbon dioxide occurs:

$$\mathrm{CO} + \mathrm{O}^{2-} \to \mathrm{CO}_2 + 2e^-$$

¹See lecture 20, 2009.

²See P. Bai and M. Z. Bazant, Nature Communications (2014).

- (a) Relate I_{lim} to the CO diffusivity D in the porous anode, the inlet CO concentration c, and the anode thickness L.
- (b) Estimate D from the data.
- (c) Estimate the solid electrolyte Ohmic resistance R_{el} (in $\Omega \cdot \text{cm}^2$).
- (d) Estimate the maximum power density P_{max} for 100% CO fuel.
- 3. **DMFC fuel crossover.** In the direct methanol fuel cell (DMFC), the anode is fed with a methanol-water fuel and produces carbon dioxide, which escapes into the solution. The reaction produces protons, which cross a proton exchange membrane (PEM) to the cathode, where reduction occurs with oxygen gas (from air exposure) to produce water. The half-cell reactions are

anode:
$$CH_3OH + H_2O \rightarrow 6H^+ + 6e^- + CO_2$$

cathode: $\frac{3}{2}O_2 + 6H^+ + 6e^- \rightarrow 3H_2O$
net reaction (combustion): $CH_3OH + \frac{3}{2}O_2 \rightarrow 2H_2O + CO_2$

Consider steady-state 1D diffusion of methanol with diffusivity D_a in the porous anode of thickness l_a , and also in the membrane of thickness l_m and diffusivity $D_m \ll D_a$, where c_M is continuous across the anode/membrane interface. The latter corresponds to "fuel crossover" which is a problem in DMFC, since combustion will rapidly consume any methanol that makes it to the cathode, where we set $c_M = 0$. Let \bar{c}_M be the (constant) methanol concentration, just outside the porous anode.

- (a) Derive the cell voltage, $V(I, c_M)$, neglecting concentration polarization at the anode, $c_M = \bar{c}_M$, and any polarization at the cathode. Assume Butler-Volmer kinetics with $\alpha = 1/2$ and n = 6 electrons transferred. Rescale the anode exchange current to be K_0 under standard conditions.
- (b) What is the limiting current I_{lim} ? Assume the anode has an active area A. Qualitatively, how will fuel crossover influence the current-voltage relation?
- (c) Relate c_M at the anode/membrane interface to the applied current I. Show that the dimensionless group, $\gamma = D_m l_a/D_a l_m$, controls the importance of fuel crossover. Derive the cell voltage $V(I, \bar{c}_M, \gamma)$.

10.626 Electrochemical Energy Systems Spring 2014

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.